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S E L F - S I M I L A R  S O L U T I O N S  

OF  T H E R M A L  T W O - P H A S E  F I L T R A T I O N  

V. N. Monakhov UDC 517.958.532 

This work is concerned with deriving generalized self-similar solutions for  a thermal model of 

two-phase filtration in porous media. 

The enormous increase in oil production all over the world has been made possible not only l~y an 
increase in the amount of proved reserves but also by the implementation of advanced mining methods that 
permit, in particular, to exploit oil pools with high-viscosity and paraffin oils, which cannot be extracted by 
conventional water flood methods. 

Among the new mining methods for oil fields, different methods of thermal treatment of pools, for 
example, by oriented expulsion of oil by heat carriers (vapor or hot water) from injection to production wells 
or by cyclical hot-vapor treatment of wells are employed most widely. To describe this treatment, Monakhov 
and Bocharov [1, 2] were the first to propose a temperature model of two-phase filtration (the MLT model). 
It is based on the Muskat-Leverett isothermic model [3] and takes heat effects into account via the known 
dependences on the temperature, viscosity, and capillary properties of the two-phase liquid components. 

In contrast to previous thermal models of two-phase filtration, the MLT model is, first, scientifically 
based in the sense that it uses only experimentally determined functional parameters, and, second, the equation 
of energy in this model is a consequence of the energy conservation laws for the components of the liquid and 
porous medium. 

Self-similar solutions of the MLT model are constructed. In the isothermal case (0 -- const), the 
existence of such solutions is established in [4, 5]. 

1. M L T  Mode l .  Let si, pi = const, pi and vi (i = 1, 2) be the phase saturations (concentrations), 
densities, pressures, and velocities (flow rates) of filtration, and v = va + v2 be the velocity of filtration of 
the mixture. The equations of the MLT model have the form 

0 ki(s) 
 o (sm) + v .  = o, ,,i = + pig), 

O0 
P2 -- Pl = Pc({,s,O),  OT -- V "  (AVO -- vO), Sl + S2 = 1. 

Here mo is the porosity of the medium, 0 is the temperature, K is the absolute permeability tensor for the 
medium, ki and #4 are the relative permeabilities and viscosity of the phases, s = (s - s~ - s o - s~ -1 

3 
0 is the effective saturation of the wetting phase, s i are the residual phase saturations, I = EOq,~i(PiCpi) -1, 

i=1 
ai = m0si (i = 1, 2) and aa = 1 - mo are the volume concentrations of the liquids and the porous medium, 
hi = hi(0) and cpi = const (i = 1, 2, 3) are the phase thermal conductivities and heat capacities, Pc((, s, O) is 
the capillary pressure, r is time, and ( = (~x, ~2, ~3) is the vector of space coordinates. 
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In the  case of one-dimensional filtration of a two-phase liquid in a homogeneous porous m e d i u m  in 
the  plane orthogonal  to the  free-fall acceleration vector g (plan filtration), the equations of the MLT model 
become 

u,. = (Au~ - Bq)~, u = (s,0).  (1) 

Here q = v ( r  + 1) -1/2 is the  specified flow rate of the  mixture  (v = c o n s t ) ,  A = A(u) = {ao} is a square 

matr ix ,  B ( u )  = (b(u),O), all = a(s)oqi, a(s) = Kklk2 (h" = c o n s t ) ,  a l l  = u(u)[pcs], a21 = vlPcol, b = ka#2u, 
u -1 = (#2kl + #lk2)m,  rn = too(1 - s o - sO), hi2 = 0, and a22 = A. 

We use the s tandard designations of Banach spaces of Hblder continuous functions f ( x )  E Ca((2) [a > 0 
and x = ( x l , . . . ,  x,)]  with a norm I[fl[(a) = max (If(x)} + } f ( x ) - f ( y ) l l x - y [ - a ) ,  continuously differentiable 

(~,y)en 
functions f ( x )  E C1((2) with a norm I[fl[(1) = max(I f (x) l  + IVf(x) [ ) ,  and functions f ( x )  E C1+C'((2) with a 

norm Ilfll(1§ = [Ifll + IIVfll 
According to the properties of the  functional parameters  of the MLT model, the coefficients of (1) 

( A , B )  E C a ( R ) ,  R = [0,1] x [00,01], and satisfy the  conditions [1] 

M o  I ~< ( a - l a l l ,  a22) ~< Mo, (a-llaxzl, a-lib01, Ib~l, lasl) .< M0, 
(2) 

a21 = 0, 0 < a(~) < 1, ~ ~ (0, 1), a(0) = a(1) = 0. 

Let f i l trat ion of the two-phase liquid occur between two wells (galleries of wells) located on the lines ~ = ~i 
(i = 0, 1). For definiteness, the line ~ = ~0 = 0 corresponds to an injection well, and ~ = ~1 to a production 
well. At  the  wells, we specify either the flow rate of the  wett ing phase (water) 

-V l  ~=~k = (alxs~ + a120~ - vb)~=~k = --(vb)[~=~k, 

which is proport ional  to the  phase mobil i ty (the right side of the  condition), or the  saturat ion of the wett ing 
phase s ~=~k = sk. Similarly, at ~ = ~ ,  the  heat  flux a = A0~ - vO or tempera ture  is specified. 

Thus ,  the  boundary  and initial conditions for system (1) take one of the  following forms: 

.u[~=~ = u/~(7"), u r=0 = u~ k = 0, 1; (3) 

( V l - v b , ~ r - c % ) e = ~ k = O ,  Ur=o=U~ k = 0 ,  1. (4) 

2. S e l f - S i m i l a r  V a r i a b l e s .  R e g u l a r i z a t i o n .  The  variables t = ln(1 + r )  and x = ~(r  + 1) -1/2, called 
self-similar, allow system (1) to be wri t ten  as 

1 
ut = (Au= - Bv ) z  + ~xu, =_ Lu. (5) 

D e f i n i t i o n  1. S teady (ut = 0) solutions of the  boundary-value problem for Eq. (5) 

- = u k ,  k = 0 , 1 ,  (6) Lu = ( Auz  Bv) z  + -~zu~ = O, u z=~k 

where x E f~ = {xl0 = x0 < x < x 1 ~< OO}, are called self-similar solutions of problem (1), (3) (of a parabolic 
type).  

Self-similar solutions of (6) allow one, in part icular,  to obtain numerical  solutions of the  initial 
equat ions (1). 

Since Eq. (6) is homogenous in 0 with respect to derivatives, the linear substi tution 0 = 71T + 70 
(7i = c o n s t )  brings boundary  conditions (6) to the form T(xo) = 1 and T(Xl) = 0. Therefore,  wi thout  loss of 
generality, in (6) we set 0o = 1, 01 = 0, and sk E [0, 1]. 

Wi thou t  changing the  notation, in (6) we set a l l  = a , a l l  and ar = a(s) + ~, where ~ > 0. We continue 
A and B outside the intervals s E [0, 1] and/9 E [0, 1] by their  ex t reme values and perform Steklov averaging of 
the  coefficients a l l ,  a12, and  a22 = ~ of the  matr ix  A: a l l ( h ) ,  c~12(h), and ,~(h), where h --+ 0 is the  averaging 
parameter .  
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Along with the form (6) of the problem regularized by the method described above, we consider its 
equivalent representation 

a2uzz + aluz + a f  = O, AOzx + AIO~ = O, v(xk) = vk, k = 0, 1. (7) 
8 

v = (u,0), u = / a ~ ( t ) d t ,  a2 = al l(h) ,  al = a l l , (h )  + asa-[lal2(h)O, - bsa-dlv + 0.5xa~ -1, f = Here 
0 

a12z(h)0z - a12(h)AIA-lOz - boa-lvOz, A1 = As - v + 0.5x, A = a22(h), and 0z is the cut-off of 0z: 0z = 0z 
for IOzl <~ M1 and 10zl = M1 for 10~1 > M1 (M1 = const > 0 is fixed below). With this regularization, the 
coefficients of system (7) are bounded: ([a2[, al, A, [All, If[) ~< 3~/(M, h). 

3. Solvabi l i ty  of  t h e  R e g u l a r i z e d  P r o b l e m .  L e m m a  1 (on estimates). For solutions v = (u,0) 
of problem (7), the following estimates hold: 

0 <<. u(x) <~ uo, exoa}szl <~ luzl < M2(xl). (9) 

Here the constants 311 and M2 are independent of e and h. 
P r o o f  of the first estimate (8) begins with the introduction of the new function w(x): 0 = (3' - 

e - ~ ) w ( x )  = aw which satisfies the equation 

Low = ~ A w ~  + ( ~  + 2 Z A e - ~ ) w ~  - ~e-Z~(AZ - A~)w = O. 

We choose/~ > 0 so large that (A/~-- A1) > 0, X E ~'~ ~--- [0, Xl] and fix 7 > 1, so that a = 7 - e  -#z > 0 (x E fl). 
Let there exist, at a certain point x2 E ~,  a negative minimumw(x),  w(z2) < 0. Then, wx(x2) = 0, wxz(x2) ~> 0, 
and Low(x2) >~ ~e-fl~2(Afl - A1)[w(x2)[ > 0, which contradicts the equality Low = 0. Consequently, w(x) >~ 0 
and, hence, 0(x)/> 0 (x e ~). The inequality 0 -= 1 - 0 >/0 is obtained in the same manner. 

We write the boundary-value problem (6) for the function O(x) in the form 

(A0~)~ + A0(AO~) = O, O(x0) = 1, 0 ( ~ )  = O, 

where A0 = (0.bz-v)A -1. Regarding A(z) = A[s(x), O(x), h] and A0(z) = A0[s(x), O(x), h] as specified functions, 
we come to the following representation of solutions of the last problem: 

:g X 
1 - O = N F ( x ) ,  F = / A-~( t )e -A(0  d~, A=fAo(t)dt, (lo) 

o o 

where g = [ f (x l ) ]  -1. 
To extend the consideration to the case Xl = oo, which is typical of mechanical problems in self-similar 

variables, we write the following inequalities, which are consequences of (10) and lead to the second estimate 
(8) for 0~: 

dF "/ole--az2 ~ "~x ~ 7~ 70 = max(A, A-l), 

The first estimate of (9) is obtained in the same manner as (8) for 0(x) by the substitution 

u(x) = (7 -- e-flZ)w(x) = v~w, 

which reduces (7) to the following equation for w(x): 

LlW = a2wzz + a3wz - cw + a f  = 0, 

"~ > 1, a l l f l - - a l  > 0, 

x e n = (0, x l )  (c > 0). 

Let, at a point z2 E f~, a negative minimum of the function w(x) be reached, i.e., w(x2) < 0. By 
virtue of regularization, a(s) = 0 for s • [0, 1] [u(x2) = a(x2)w(x2) < 0], and then, Llw(z2)  >1 c[w(x2)[ > 0, 
which is inconsistent with the validity of the equation Llw(z2)  = 0 (x2 E fl) and, hence, u(x) = aw  >~ 0 
(x Ef l ) .  Similarly, introducing the function z = (uo - u)(7 - e-#Z) -1, we obtain the upper bound u(x) <~ uo. 
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The estimate ]0z[ allows us to eliminate the cutoff 0, in the coefficients al and f and write problem (7) for 
8 

/ a t ( t )  dt in the form u ( x )  

0 

(a2uz  -q- ~P)z = 0, u (0 )  = u0,  U(Xl) = Ul. 

Integration of this problem yields 

-a2uz = q~ + C, u( O ) = uo ( C = coast). (11) 
Xl 1 Xl 

Here r = 0.5[xs + fs(t)dt] +al2Oz-vb, u o =  fa t ( t )& C = col[u0- Ul- fa~l(t)~(t)dt], and 
x 0 0 

Z l  

Co = f a~l(~) dr. 
0 

Representation (11) obviously leads to the second estimate (9). Lemma 1 is proved. 
R e m a r k  1. Equations (7) [the equation for u(x) is multiplied by at(s)] lead directly to the following 

estimates: 

al(as=)=l ~< M2(xl), I(Ao=)=I ~< Mle -ax2. 

L a m i n a  2 (on Hhlder continuity). Let 

a(s) >1 a0sa~ -- s) al, a0 = const > 0 (a0, al /> 0). (12) 

Then for solutions u(~) = (s, e) of problem (6) the following inequalities hold: 

(llsll (~) , Ilats~ll (z), II0dl (~)) <~ M3(x l ) ,  fl ---- (1 + a)  -1 , a = max(a0 ,  a l ) .  (13) 

Proof .  We first establish the HSlder continuity of the transformation s = s(u), which is inverse to 
8 

u = / a t ( t )  dt (at = 
0 

a + e / > a ) :  

i s (u2 )  - s ( u l ) l  ~< Klu2 - ull ~, 

1 

(Ul,U2) E [0, p], p = / a ~ ( t ) d t .  
0 

For this, it apparently suffices that [u(s2) - u ( s l ) [  /> Ko]s2 - s l l  s+a for (sbs2) E [0.3/4] U [1/4.1]. 
s2 s2 

definiteness, let 0 ~< Sl ~< s2 ~ 3/4. Then, u 2 -  Ul -- / a e ( s )  ds >1 K o /  For sa(X 8) a ds 
Sl Sl  

K(s~ +1 - s~ +1) t> K(s2 - -  Sl) c~+l, K = K04-"(1 + a) -1. The last of the chain of inequalities follows 
from the consideration of the function f ( a )  = (1 - a~)(1 - a) -v (7 = 1 + a and a = sl/s2), for which 
minf (a )  = f(0) = l(Ya > 0, 0 < a < 1). 

Thus, it is proved that s(u) E C~[0,p]. Since ]uz[ < M2, we have s[u(x)] E C#[0,zl]. Then, 
representations (10) and (11), in which the coefficients )~(x) - A[s(x), 0(z)], a2(x), etc. are continuous after 
HSlder, lead to inequalities (13). Lemma 2 is proved. 

L e m m a  3 (on the solvability of the regularized problem). Let (A, B) E Ca(R), R = (0, 1) x (0, 1), and 
conditions (2) be satisfied. Then, the regularized problem (6) V(e, h) > 0 has at least one classical solution 
u = (s,O), for which estimates (8) and (9) are valid. Under the additional condition (12), u(x) satisfies 
inequalities (13). 

Proof .  We write problem (6) for u = (s, 0) in equivalent form: 

d2u 
dz 2 = F ( x , u ,  ux), u(xk)  = uk, k = O, 1. 

By virtue of the regularization of the coefficients (6), estimates (8) and (9), and their consequence Isz] 
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a-[1]uzl <~ M4(xl ,g) ,  we have IF I ~< Ms(x, , r  for (s,O) E [0,1] and ( s , ,0 , )  E ( - o c ,  c~) V(s,h) > 0. The 
solvability of the above problem and problem (6) follows from the Birkhoff-Kellog theorem [6]. Lemma 3 is 
proved. 

4. G e n e r a l i z e d  So lu t ions .  D e f i n i t i o n  2. A vector u E C~(f~) which satisfies the boundary 
conditions, inequalities (8), (9), and (13), and the integral identity 

Zl 
1 

0 

Vr/ E c l ( f i ) ,  r/(0) -= r/(Xl) = 0 is called a generalized solution of p rob lem (6). 
$ 

R e m a r k  2. By virtue of (8), (9), and (13), we have (u,O) = v e C1+~(~) (a > 0 and u = / a ~ ( t ) d t ) ,  
0 

and, hence, constructing a generalized solution of problem (6) is equivalent to solving the Cauchy problem 

- a 2 u ~  = ~0 + c ,  - ~ 0 ~  = r + K, ~(0) = g0. (15) 

Xl 

Herethefunctioncpandtheconstant  Caredef inedin  ( l l) ,  r  f O(t)dt) -vO,  K =  Kol (1  - 

z 1 Zl 
/ ~ ( t ) ~ - l ( ~ , ) d t ) ,  and 1~o - / ) t - l ( t ) d t .  
o o 

E x i s t e n c e  T h e o r e m  1. Let (A, B)  6 C~(Ft), a > 0, R = (0, 1) x (0, 1), and (2) and (12) hold. Then, 
there is at least one generalized solution of problem (6). 

8 
sequence {u ( z , e ,h ) ,O(z , e ,h ) }  E C'+~(f~),  u = [ a , ( t ) d t  we separate P r o o f .  From the out  the 

0 
subsequence {u(x, ck, hk), O(z, sk, hk)}, which converges at Cl+~o(h),  0 < a0 < a as (ek, hk) ~ 0. Passing to 
the limit (sk, hk) --+ 0 in the integral identity (14), we obtain a generalized solution {u(z), 0(z)} of problem 
(5).  

T h e o r e m  2 (on the finite velocity). Let, in addition to the conditions of Theorem 1, the following 
inequalities hold'. 

(a(s),b(s,O)) <. Ms "c , 7 >t 1 {or(a, lb -  b(1,0)l ) ~< M(1 - s)7}. (16) 

Then, for S(~l )  = 0 {or s ( ~ )  = 1}, ~ ,  >> 1, there i~ a wlu~ 5. < oo such that 

s(x)--O { o r s ( x ) - - l }  at x>~x,, (17) 

i.e., the front s = 0 (s = 1) propagates at finite velocity. 
P r o o f .  We set 

x, = (X 2 q- M0~-l) 1/2, X = 2max(la,2ls-lM1, Ivlb,s-1), (18) 

1 

where M0 = / a ( t ) t - l d t ,  6 = (1/8)mina11,  M1 = maxlO~l,  b, = b for s(zx) = 0 and b. = Ib-b(1 ,0) l  for 
0 

S(Xl) = 1. 
We consider representation (11), (15) for u(z). Since u(zl) = 0 and u ) 0 in the neighborhood 

z = xl,  we apparently have u~(zl) ~ 0 and, hence, c = -a2(0,0)ux(xl)  >. O. Then, -a2u~ = ~ + c ) 
0 . 5 z s  - lax2110~l - Ivlb ) xs/4 at z ) X,  where X is d e f i n e d  by (18). Thus, we come to t h e  inequality 

[u(s)]~ +2~zs ~< 0, ~5 = (1/8)min~11, 

which is equivalent to 

[r  + 26x <-. 0, x e [X, x , l ,  s ( X )  = s2 >/0 ,  (19) 

371 



8 

where r  = f a(t) t  -1 dt. From (19) it follows that Oz < 0 at x ~> X, and Cs /> 0 (s E [0, 1]). Therefore, 
0 

s(x)  ~ s(y)  at x/> y. Integrating (19), we obtain 

s 2  

- j a ( t ) t - '  dt + _ X 2) 0 
s 

Since 

t> x). 

s2 1 

r  - r  = - f a(t)t  -1 dt ) - / a(t)t  -1 dt - - M o ,  
s o 

from the previous inequality it follows that 5(x 2 - X 2) - M0 ~< 0 ( x t> X), which is possible only at 
X ~ x ~ x, -- (X 2 + M05-1) 1/2. 

In order that  (19) be valid for x > x,, relation (17) must be satisfied. 
If the problem s(0) = so /> 0, S(Xl) = 1 is solved, then substituting a = 1 - s and assuming that 

b, = Ib(s,O) - b(1,0)], we come to the above case a(xl )  = 0, which leads to the identity a = 1 - s = 0 at 
x/> x,. Theorem 2 is proved. 

R e m a r k  3. Let the boundary-value problem for system (6) be solved in the interval [ -x0,xl] ,  
(X0, Xl) >> 1, and s ( - x 0 )  = 1 and s(xl) = 0. Then, according to Theorem 2, we have a solution of the 
type of a surf: s(x)  -- 1 at x < - x ,  and s(x) - 0 at x/> x, 

R e m a r k  4. Estimates (8) for 0(x) and the proved finite velocity for s(x)  [relations (17)] obviously lead 
to the existence of a generalized solution of problem (6) at Xl = co. 

5. M i x e d  B o u n d a r y - V a l u e  P r o b l e m .  For system (6), we consider the following boundary-value 
problem of type (4): 

(mu  - v B ) ( x 0 )  = Q, = u , ,  v />  0. (20) 

Here x0 = 0, l and xl = l, 0, where l > 0 is finite or l = co; the vector Q = ( - Q ,  q) is specified (Q is the flow 
rate of the wetting phase and q is the heat flux). 

We study the cases of physically feasible conditions on the parameters of the boundary-value problem 
(20). In this case, for solutions of problem (6), (20) [system (6) and boundary conditions (20)], Theorems 1 
and 2, proved for the first boundary-value problem (6), are valid. 

We first consider the case x0 = 0, xl = l >> 1. Integrating (20), for O(x) we obtain 

AOz = N e  -h(x), A = f A - l ( t ) ( t / 2  - v) dt, (21) 

o 

where N is the required constant. Relation (21) leads to the inequality ]AI z-2 ~< M0, x />  1. Substituting 
(21) into (20), we obtain 

1 
(A0z - vO)(O) = N + g v  f A-l(t)e -h(t) dt - v01 = q, 

o 

l ( / )_1 
and, hence, N = (q + v01) 1 + v A-le  -A dt , 0 < 5o ~ N <. 8~ 1. Then 

0 

1 
0(0) = 01 - N f  A-le  -A dt >1 01 - (q-4- vO1)v -~ 0,, 

0 

i.e., 0, < 0' = 01 = 0(I). Assuming formally that 0, is specified, we come to the first boundary-value problem 
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(6) studied above, and from Lemma 1 we find that 

o,  .< .< o, - o*, 10xl ~< M, e - ~ 2 .  (22) 

Because estimates (22) do not depend on l, we can set l = co. 
We turn to problem (6), (20) for water saturation s = s(x). If at the point x = 0 at the well, the flow 

rate of the liquid is proportional to its mobility (Q = vb x=o) and S(Xl) = Sl = 0, then, from the equality 

b s=O = 0 we find that s - 0 is a solution of problem (6), (20). If S(Xl) = 1, we substitute a = 1 - s and then, 

as above, cr --- 0 is a solution of the converted problem (6), (20). 

Thus, for Q = vb ~=o' it makes sense to study problem (6), (20) only if S(Xl) # 0, 1. 
8 

We consider problem (20) for the regularized equation (7) for u = /a~( t )dr .  The coefficients of this 
0 

1 

[ = 0 ,  where ?21 = / a , ( t ) d t .  Thus, the conditions of Lemma equation are bounded and a f  ~=0,~1 1, according 
0 

to which 0 ~< u(x) <~ ul and [uz[ <. M2(xl), are satisfied, and these estimates ensure solvability of problem 
(7), (20) (Lemma 3 and Theorem 1) for xl < cr When the additional conditions (16) are satisfied, Theorem 2 
on the finite velocity is valid, and, hence, problem (6), (20) is solvable at xl = cr as well. 

We now consider the case of problem (20) where x0 = l ~ cr and xl = 0. This circumstance does not 
introduce additional difficulties in determining the function O(x) compared to the case x0 = 0 and xl ~ co. 

We assume that there is u00 = lim u(x), and (lu'[, ]u"[) ~< M, x E [0, ~ ) .  Then, u'(x) -~ 0 as z --* cc 
X - - ' 0 0  

[7, p. 200]. 
Since, by virtue of (22), 0~ -+ 0 as x --+ r conditions (20) at the point x0 = cr take the form 

0o~ = --qv -I,  b(scr 000) = Qv -1. (23) 

By virtue of the uniqueness of b(s, O) for s (bs # O, s # O, 1) the values of s00 and 000 are uniquely determined 
from relations (23). 

In particular, soo = 1 for.0 = v and s00 = 0 for v = 0, and 0oo is not determined. Thus, for x0 = oo and 
xl = 0 problem (6), (20)is equivalent to the one studied previously (s, 0)(0) = (s], 01), (s, 0)(00) = (s00,000), 
where s00 and 0oo are uniquely determined from (23). 

R e m a r k  5. If the flow rate at the well x0 = oo is proportional to the mobilities of the phases, i.e., 
Q = vbl,=00, conditions (23) do not determine the values of s00. 

6. N u m e r i c a l  I m p l e m e n t a t i o n .  Zhumagulov et al. [8] describe the algorithmic fundamentals of the 
project "New Computer Technologies in Oil Production" developed by the authors. One of the central points 
of the project is a program for the numerical calculation of self-similar solutions of the MLT model and 
solutions on of the unsteady problem (5) in self-similar variables. 

It is known that the self-similar variables t = ln(1 + r) and x = ~(1 + T)-U2 adequately describe the 
motion of oi l-water contact, the dynamics of the regions of the well effect, etc. At the same time, the dynamics 
of the main output  characteristics of oil extraction is still evaluated on the basis of self-similar solutions of 
two-phase filtration. Therefore, the problem of numerical construction of self-similar solutions of the MLT 
model has assumed an applied significance. However, numerical implementation of self-similar solutions is 
hampered by several circumstances: 

(1) infiniteness of the inter-ell of integration (x E [0, co)), 
(2) non-evolution nature of boundary conditions (6), (20), 

(3) degeneration of Eq. (6) for s(x) (hills=0,1 = 0), 

and others. 
These features of problem (6) were taken into account in the development of numerical algorithms. 
1. To obtain a solution of problem (6) in a finite interval, we used the theoretical estimates (18) of the 

front x = x.  of propagation of the perturbation for s(x) and estimate (8) of the rate of convergence O(x) as 
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x --* oo. In this case, the length of the interval of integration l < c~ was fixed. 
2. To reduce problem (6) to an evolution problem, we used the following iteration of the boundary 

conditions by Cauchy data: 

u(O) =uo, u'(O)= -(tana~n),tana~n)), a i e  (0,~r/2). 

The process of iteration began with an arbitrary value (a~ ~ a~~ According to this, the value s(~ 
or 9(~ larger or smaller than zero, and a~ 1) -- 2a~ 0) or a~ 1) -- a~ 0)/2 was used as a~ 1). The convergence 
of such process in the isothermal case (9 - const) was established by Kazhikhov [5]. 

3. The algorithm of reducing Eq. (6) for s(x) to a nondegenerate equation consists not only of its 
regularization --  the substitution of all = a~all (a~ -~- a n u c) for all  ~ aall but also additional calculations 

$ 

of the function u(x) = / a~(t) dt and subsequent determination of s ( ~ ) .  

0 
Several difference schemes of solving problem (6), which models the displacement of oil by hot water, 

were compared. 
It is established numerically that heating of a pool increases the degree of washing of the pool 

considerably. The above algorithms of solution of problem (6) allow one, in particular, to rapidly evaluate the 
effectiveness of thermal methods of secondary exploitation of oil fields. 

The present approaches are implemented in [9]. 
This work was supported by the Russian Foundation for Fundamental Research and the Program "The 

Universities of Russia." 
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